R/ROSci.R
ROSci.Rd
Uses ROS model output from the NADA
package and computes the Zhou and Gao 1997 modified Cox’s method two-sided confidence interval around the mean for a lognormal distribution. Computes a t-interval for a gaussian ROS model output.
ROSci(cenros.out, conf = 0.95, printstat = TRUE)
an ROS model output object (see details)
Confidence coefficient of the interval (Default is 0.95)
Logical TRUE
/FALSE
option of whether to print the resulting statistics in the console window, or not. Default is TRUE.
Prints a lower (LCL) and upper (UCL) confidence interval based on the conf
provided (Default is 95%)
This function uses an ROS model output based on the ros
function in the NADA
package. The lognormal distribution is the default for the NADA package but a gaussian distribution is optional here.
For more detail on ROS modeling see the ros
help file (?NADA::ros
).
For implementation of ROSci(...)
see the examples below.
Helsel, D.R., 2011. Statistics for censored environmental data using Minitab and R, 2nd ed. John Wiley & Sons, USA, N.J.
Lee, L., Helsel, D., 2005. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Computers & Geosciences 31, 1241–1248. doi: 10.1016/j.cageo.2005.03.012
Zhou, X.-H., Gao, S., 1997. Confidence Intervals for the Log-Normal Mean. Statistics in Medicine 16, 783–790. doi: 10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2
data(Brumbaugh)
myros <- NADA::ros(Brumbaugh$Hg,Brumbaugh$HgCen)
summary(myros)
#>
#> Call:
#> lm(formula = obs.transformed ~ pp.nq, na.action = na.action)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.23282 -0.05691 -0.01930 0.03697 0.59211
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1.54719 0.01031 -150.11 <2e-16 ***
#> pp.nq 0.99735 0.01213 82.21 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.1088 on 116 degrees of freedom
#> Multiple R-squared: 0.9831, Adjusted R-squared: 0.983
#> F-statistic: 6759 on 1 and 116 DF, p-value: < 2.2e-16
#>
# ROS Mean
mean(myros$modeled)
#> [1] 0.3555983
# 95% CI around the ROS mean
ROSci(myros)
#> Assuming a lognormal distribution
#> LCL UCL
#> 1 0.2883598 0.4385151