Performs a nonparametric Paired Prentice-Wilcoxon test of whether the median difference between two columns of paired censored data equals 0 (O'Brien and Fleming, 1987)
ppw.test(xd, xc, yd, yc, alternative = "two.sided", printstat = TRUE)
The first column of data values plus detection limits
The column of censoring indicators, where 1 (or TRUE
) indicates a detection limit in the xd column, and 0 (or FALSE
) indicates a detected value in xd
.
The second column of data values plus detection limits
The column of censoring indicators, where 1 (or TRUE
) indicates a detection limit in the yd column, and 0 (or FALSE
) indicates a detected value in yd
The usual notation for the alternate hypothesis. Default is “two.sided”
. Options are “greater”
or “less”
.
Logical TRUE
/FALSE
option of whether to print the resulting statistics in the console window, or not. Default is TRUE.
Paired Prentice-Wilcoxon test results including Z-statistic, n (sample size), p-value and median difference
Helsel, D.R., 2011. Statistics for Censored Environmental Data using Minitab and R, 2nd ed. John Wiley & Sons, USA, N.J.
O’Brien, P.C., Fleming, T.R., 1987. A Paired Prentice-Wilcoxon Test for Censored Paired Data. Biometrics 43, 169–180. https://doi.org/10.2307/2531957
data(PbHeron)
ppw.test(PbHeron$Liver,PbHeron$LiverCen,PbHeron$Bone,PbHeron$BoneCen)
#> Paired Prentice Wilcoxon test for (x:PbHeron$Liver - y:PbHeron$Bone) equals 0
#> alternative: PbHeron$Liver not equal to PbHeron$Bone
#>
#> n = 27 Z = -3.541 p-value = 0.000398
#> Median difference equals -0.8902562